Thermally driven hopping and electron transport in amorphous materials from density functional calculations

نویسنده

  • Tesfaye A Abtew
چکیده

In this paper we study electron dynamics and transport in models of amorphous silicon and amorphous silicon hydride. By integrating the time-dependent Kohn–Sham equation, we compute the time evolution of electron states near the gap, and study the spatial and spectral diffusion of these states due to lattice motion. We perform these calculations with a view to developing ab initio hopping transport methods. The techniques are implemented with the ab initio local basis code SIESTA, and may be applicable to molecular, biomolecular and other condensed matter systems. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrons and Phonons in amorphous Si: Deformation Potentials and Solutions of the Time Dependent Schrödinger Equation

We employ first principles methods to explore the coupling between electrons and the lattice in amorphous silicon (a-Si). First we compute the adiabatic electronic response to phonon modes in a realistic model of a-Si. Then, we present a simulation of the electron dynamics of localized edge states in a-Si at room temperature by integrating the time dependent Schrödinger equation. We study the c...

متن کامل

Detailed analysis of charge transport in amorphous organic thin layer by multiscale simulation without any adjustable parameters

Hopping-type charge transport in an amorphous thin layer composed of organic molecules is simulated by the combined use of molecular dynamics, quantum chemical, and Monte Carlo calculations. By explicitly considering the molecular structure and the disordered intermolecular packing, we reasonably reproduce the experimental hole and electron mobilities and their applied electric field dependence...

متن کامل

Charge Transport in Nanostructured Materials: Implementation and Verification of Constrained Density Functional Theory.

The in silico design of novel complex materials for energy conversion requires accurate, ab initio simulation of charge transport. In this work, we present an implementation of constrained density functional theory (CDFT) for the calculation of parameters for charge transport in the hopping regime. We verify our implementation against literature results for molecular systems, and we discuss the...

متن کامل

Nitrogen driven structural transformation in carbon nitride materials

The variation of local bonding as a function of nitrogen concentration in plasma-assisted pulsed-laser deposited carbon Ž . nitride films has been systematically studied. Time-of-flight TOF mass spectroscopy and electron energy loss spectroscopy Ž . 3 Ž . EELS were combined to identify ablation conditions that produce highly sp -hybridized diamond-like-carbon DLC for typical carbon nitride grow...

متن کامل

Theoretical Investigation on Charge Transfer Properties of 1,3,5-Tripyrrolebenzene (TPB) and its Derivatives with Electron-withdrawing Substituents

The electronic structures and charge transport properties of 1,3,5-tripyrrolebenzene (TPB) and its substituted derivatives with –F and –CN groups have been investigated by DFT calculations in combination with the Marcus hopping model. The dimer geometry was optimized by density functional theory method with dispersion force correction being included (DFT-D). Consequently, the charge transfer in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004